ORGANIC COMPOUNDS

Acta Cryst. (1998). C54, 950-952

Calodendrolide, \dagger a Degraded Limonoid from Calodendrum capense

Mohamed S. Rajab, ${ }^{a}$ Frank R. Fronczek, ${ }^{b}$ Joseph K. Rugutt ${ }^{b}$ and Nikolaus H. Fischer ${ }^{b}$
${ }^{a}$ Department of Chemistry, Moi University, PO Box 3900, Eldoret, Kenya, and ${ }^{b}$ Department of Chemistri; Louisiana State University, Baton Rouge, LA 70803-1804, USA. E-mail: fronz@chxrayl.chem.lsu.edu

(Received 21 August 1997; accepted 3 November 1997)

Abstract

Calodendrolide, $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$. has its epoxide 3 oriented and its 3^{\prime}-furyl group α oriented. There are three independent molecules in the asymmetric unit, differing principally in the conformation of the 3^{\prime}-furyl group with respect to the remainder of the molecule. One molecule has its 3^{\prime}-furyl O atom a oriented, with an $\mathrm{O}-\mathrm{C}-\mathrm{C}=\mathrm{C}$ torsion angle of $30.7(4)^{\circ}$, while the other two molecules have their 3^{\prime}-furyl O atoms 3 oriented, with $\mathrm{O}-\mathrm{C}-\mathrm{C}=\mathrm{C}$ torsion angles of -136.9 (3) and $-134.5(3)^{\circ}$. The epoxide is asymmetric, with mean CO distances of 1.436 (2) and 1.464 (2) \AA.

Comment

Calodendrolide, (1), a highly degraded limonoid, was first isolated from the root bark of Calodendrum capense Thunb (Rutaceae) (Cassady \& Liu, 1972). The crystal structure of (1) was determined in order to confirm the relative configurations at the chiral centers and to probe the conformation of the pyran ring. A description of the isolation and characterization of (1) is given by Cassady \& Liu (1972) and the synthesis of DL-calodendrolide has been reported by Tokoroyama et al. (1990), and Rajab \& Guyo (1993). Drewes et al. (1985) confirmed the configuration of calodendrolide at the C atom bearing the furan ring.

(1)

[^0]Three independent molecules are present in the asymmetric unit of (1); they are illustrated in Fig. 1, in which all three are shown in the same orientation, rather than in proper orientation with respect to one another. Space group $P 2_{\mid} 2_{1} 2_{1}$ with $Z^{\prime}=3$ is uncommon, occurring in only 0.2% of cases in that space group in the Brock \& Dunitz (1994) compilation, and 0.4% in the compilation of Chernikova et al. (1991) for homomolecular organics. The three molecules differ principally in the conformation of the 3^{\prime}-furyl group with respect to the remainder of the molecule, as shown in Fig. 1 and as described by the tabulated $\mathrm{Ol}-\mathrm{C} 17-$ C20-C21 torsion angles. Endocyclic torsion angles in the two six-membered rings exhibit excellent agreement across molecules A, B and C (tabulated for molecule A in Table 1). The maximum spread of any of these 12 torsion angles is only $2.3(4)^{\circ}$, between the A and B molecules for $\mathrm{C} 17-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$. The conformation of the cyclohexene ring is a half chair, with the local twofold axis bisecting the double bond. The pyran ring has the twist conformation observed in 1,3-cyclohexadiene (Oberhammer \& Bauer, 1969), with near-zero torsion angles about $\mathrm{C} 14-\mathrm{C} 15$ and $\mathrm{Ol}-\mathrm{C} 16$, and a torsion angle of $21.3(2)^{\circ}$ (mean of three) about the bond joining them. The closely related compound DL-epi-pyroangolensolide, which is racemic, epimeric to (1)

Fig. 1. The three independent molecules, with displacement ellipsoids drawn at the 30% probability level and H atoms represented as small circles of arbitrary radii. Each molecule has been placed in the same orientation for comparison.
at C17, and lacks the epoxide at C14-C15, has been determined (Drewes et al., 1985). It appears to have a similar conformation for the six-membered ring system, but coordinates have not been reported. The epoxide of (1) is slightly asymmetric, with the mean value for the $\mathrm{O} 2-\mathrm{C} 14$ distance 0.028 (3) \AA longer than that for $\mathrm{O} 2-\mathrm{C} 15$.

Experimental

Compound (1) was isolated from the root bark of Calodendrum capense Thunb (Rutaceae) which was collected in Eldoret, Uasin Gishu District, Kenya. Crystals were grown from acetone-hexane.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}$
$M_{r}=260.29$
Orthorhombic
$P 2_{1} 2_{1} 2_{1}$
$a=9.0230(5) \AA$
$b=17.894$ (2) \AA
$c=24.469(2) \AA$
$V=3950(1) \AA^{3}$
$Z=12$
$D_{x}=1.313 \mathrm{Mg} \mathrm{m}^{-1}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
$\dot{\psi}$ scans (North et al.,
1968)
$T_{\text {min }}=0.911, T_{\text {max }}=0.929$
4558 measured reflections
4558 independent reflections
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54184 \AA$
Cell parameters from 25 reflections
$\theta=20-25^{\circ}$
$\mu=0.74 \mathrm{~mm}^{-1}$
$T=299 \mathrm{~K}$
Needle
$0.58 \times 0.10 \times 0.10 \mathrm{~mm}$
Colorless

Refinement

Refinement on F^{2}
$R(F)=0.052$
$w R\left(F^{2}\right)=0.044$
$S=1.557$
4232 reflections
527 parameters
H atoms: see below
$w=4 F_{0}^{2} /\left[\sigma^{2}\left(F_{a}^{2}\right)\right.$
$+0.0004 F_{0}{ }^{4}$]
$(\Delta / \sigma)_{\max }=0.005$
$\Delta \rho_{\text {max }}=0.14 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.08 \mathrm{e}^{-3}$
Extinction correction: isotropic (Zachariasen, 1963)

Extinction coefficient: $5.1(2) \times 10^{-7}$
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)
Absolute structure: assumed to correspond to that of methyl angolensate (Cassady \& Liu, 1972)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

O2A-C14A	1.467 (3)	C8B-C9B	1.324 (4)
O2A-C15A	1.441 (3)	C20B-C22B	1.414 (4)
C8A-C9A	1.332 (4)	$\mathrm{O} 2 \mathrm{C}-\mathrm{Cl4C}$	1.455 (3)
C20A-C22A	1.412 (4)	$\mathrm{O} 2 \mathrm{C}-\mathrm{C} 15 \mathrm{C}$	1.431 (3)
$\mathrm{O} 2 B-\mathrm{Cl} 14 B$	1.469 (3)	$\mathrm{C8C}-\mathrm{C9C}$	1.323 (4)
O2B--C15B	1.435 (3)	$\mathrm{C} 20 \mathrm{C}-\mathrm{C} 22 \mathrm{C}$	1.417 (4)

C14A-O2A-C15A	60.7 (2)	$\mathrm{O} 2 B-\mathrm{C} 15 B-\mathrm{Cl} 4 B$	60.7 (2)
O2A--C14A-C15A	58.8 (2)	$\mathrm{C} 14 \mathrm{C}-\mathrm{O} 2 \mathrm{C}-\mathrm{Cl5C}$	60.8 (2)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C15A}-\mathrm{C} 14 A$	60.5 (2)	$\mathrm{O} 2 \mathrm{C}-\mathrm{C14C-C15C}$	58.8 (2)
$\mathrm{C} 14 B-\mathrm{O} 2 B-\mathrm{C} 15 B$	60.8 (2)	$\mathrm{O} 2 \mathrm{C}-\mathrm{Cl} 15 \mathrm{C}-\mathrm{Cl} 14 \mathrm{C}^{\circ}$	60.4 (2)
O2B-C14B-C15B	58.4 (2)		
C17A-O1A-C16A-C15A		-1.2(4)	
C16A-O1A-C17A-C13A		-38.4 (3)	
C14A-C8A-C9A-C11A		1.7 (4)	
C9A-C8A-C14A-C13A		-19.8(4)	
C8A-C9A-C11A-C12A		-13.9 (4)	
C9A-C11A-C12A-C13A		42.6 (3)	
$\mathrm{C} 11 A-\mathrm{Cl} 2 A-\mathrm{C} 13 A-\mathrm{Cl} 4 A$		$A \quad-58.3$ (3)	
C12A-C13A-C14A-C8A		47.3 (3)	
$\mathrm{C} 17 A-\mathrm{Cl} 3 A-\mathrm{C} 14 A-\mathrm{C} 15 A$		$A \quad-38.6$ (3)	
$\mathrm{C} 14 A-\mathrm{C} 13 A-\mathrm{C} 17 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}$		56.7 (3)	
C13A-C14A-C15A-C16A		$A \quad 1.5$ (4)	
C14A-C15A-C16A-C1A		21.2 (4)	
O1A-C17A-C20A-C21A		30.7 (4)	
$\mathrm{O} 1 B-\mathrm{C} 17 B-\mathrm{C} 20 B-\mathrm{C} 21 B$		-136.9 (3)	
$\mathrm{O} 1 \mathrm{C}-\mathrm{C} 17 \mathrm{C}-\mathrm{C} 20 \mathrm{C}-\mathrm{C} 21 \mathrm{C}$		- -134.5 (3)	

The numbering scheme chosen corresponds to the standard nomenclature for undegraded limonoids. H atoms on the epoxidized C15A, C15B and C15C atoms were refined isotropically. Other H atoms were placed in calculated positions, guided by difference maps for the methyl groups. $\mathrm{C}-\mathrm{H}$ distances for calculated H atoms were $0.95 \AA$, with $B_{\mathrm{iso}}=1.3 B_{\text {eq }}$ of the attached C atom. Assignment of atom types for C 23 and O 4 of the 3^{\prime}-furyl ring was made based upon visibility of the C23 H atom in difference maps, $\mathrm{C} 20-\mathrm{C} 22$ distances corresponding to a single bond opposite O 4 and refinement of displacement parameters to unrealistic values when assignments were reversed.

Data collection: CAD-4 Operations Manual (Enraf--Nonius, 1977). Cell refinement: CAD-4 Operations Manual. Data reduction: PROCESS MolEN (Fair, 1990). Program(s) used to solve structure: direct methods SIR (Burla et al., 1989). Program(s) used to refine structure: LSFM MolEN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: BTABLE PTABLE CIF IN MolEN.

The purchase of the diffractometer was made possible by a National Science Foundation chemical instrumentation grant, which we gratefully acknowledge. Improvements to the LSU X-ray Crystallography Facility were supported by Grant No. LEQSF(1996-97)-ENH-TR-10, administered by the Louisiana Board of Regents.

Supplementary data for this paper are available from the $I U C r$ electronic archives (Reference: DA1000). Services for accessing these data are described at the back of the journal.

References

Brock. C. P. \& Dunitz. J. D. (1994). Chem. Mater. 6. 1118-1127.
Burla, M. C.. Camalli, M.. Cascarano, G.. Giacovazzo. C., Polidori, G., Spagna, R. \& Viterbo. D. (1989). J. Appl. Cryst. 22, 389-393.

Cassady, J. M. \& Liu. C.-S. (1972). J. Chem. Soc Chem. Commun. pp. 86-87.
Chernikova. N. Yu., Bel'skii, V. K. \& Zorkii, P. M. (1991). J. Struct. Chem. 31, 661-666.
Drewes, S. E.. Grieco. P. A. \& Huffman, J. C. (1985). J. Org. Chem. 50, 1309-1311.
Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft. The Netherlands.
Fair, C. K. (1990). Molen. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Oberhammer, H. \& Bauer, S. H. (1969). J. Am. Chem. Soc. 91, 10-16.
Rajab, M. S. \& Guyo, P. M. (1993). Bull. Chem. Soc. Ethioj). 8. 35-38.
Tokoroyama, T., Kotsuji, T., Matsuyama, H., Shimura, T., Yokotani. K. \& Fukuyama, Y. (1990). J. Chem. Soc. Perkin Trans. 1. pp. 1745-1752.
Zachariasen, W. H. (1963). Acta Crist. 16, 1139-1144.

Acta Cryst. (1998). C54, 952-954

9-Hydroxy-9-(3-methylbut-3-en-1-ynyl)-9H-fluorene-1-carbonitrile

J. Gabriel Garcia, ${ }^{\dagger} \dagger$ Julia HaAs, ${ }^{a}$ Augusto Rodrigueza and Frank R. Fronczek ${ }^{b}$
${ }^{\text {a }}$ Department of Chemistry, Clark Atlanta University; Atlanta, GA 30314, USA, and ${ }^{\text {b }}$ Department of Chemistry: Louisiana State University, Baton Rouge, LA 70803-1804. USA. E-mail: garcia@oberon.cmc.uab.edu

(Received 6 May 1997: accepted 24 November 1997)

Abstract

The N atom in the title compound, $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}$, lies -0.0365 (14) A from the plane formed by the fluorene system, and the $\mathrm{C} \equiv \mathrm{N}$ distance is 1.143 (2) \AA. The $\mathrm{C} \equiv \mathrm{C}$ distance is 1.191 (2) \AA, and the ethynyl group deviates slightly from linearity, with $\mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}$ bond angles of $172.0(1)$ and $176.1(2)^{\circ}$. Terminal CH_{2} and CH_{3} groups are 50:50 disordered, with equal $\mathrm{C}-\mathrm{C}$ distances of 1.408 (3) and 1.406 (3) \AA.

Comment

The determination of the crystal structure of the title compound, (I), was undertaken as part of an on-going program of structure analyses of some novel intermediates in the synthesis of potentially bio-active compounds bearing a conjugated acetylenic functionality. The nitrile unit is nearly coplanar with the fluorene ring system; the torsion angles $\mathrm{N} 1-\mathrm{C} 14-\mathrm{C} 3-\mathrm{C} 2, \mathrm{~N} 1-\mathrm{C} 14-\mathrm{C} 3-\mathrm{C} 4$ and $\mathrm{C} 14-\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl}$ are $162.3(3),-17.1(3)$ and $0.9(2)^{\circ}$, respectively.

[^1]
(1)

The $\mathrm{C} 15-\mathrm{Cl} 6$ bond distance in the title molecule $[1.191(2) \AA$ i $]$ is agreement with those of related alkynol compounds: 3,3-diphenyl-1-propyn-3ol [1.169(2) Å; Garcia et al., 1995], 1,1-bis(2,4-di-methylphenyl)-2-propyn-1-ol, 1,1-bis(2,4-dimethylphen-yl)-2-butyn-1-ol and 9-hydroxy-9-(1-propynyl)fluorene [1.208 (5), 1.189 (6) and 1.16 (2) A., respectively; Toda et al., 1985], 1,6,9,14-tetrahydroxy-1,6,9,14-tetra-tert-butylcyclohexadeca-2,4,7,10,12,15-hexayne [1.168 (6) \AA; Toda et al. 1988], and also with those of related alkyne compounds: phenyl-(2-trimethylsilylethynyl)phenylmethanone and (2-trimethylsilylethynyl)benzaldehyde [1.199 (3) and 1.192 (3) Å, respectively; Garcia et al., 1996], 2,3,5,6-tetra[1-ethynyl-2(trimethylsilyl)]pyridine $[1.190(4)$ and 1.191 (4) Å; Garcia et al., 1997], 2,3,5,6-tetra[1-ethynyl-2-(trimethylsilyl)]pyrazine [1.198 (5) and 1.199 (6) Å; Garcia et al., 1997], 2,3,4,5-tetra[1-ethynyl-2-(trimethylsilyl)]thiophene [1.190 (4) and 1.190 (4) Á; Garcia et al., 1997], 3,4-dibromo-2,5-di-[1-ethynyl-2-(trimethylsilyl)]- N-methylpyrrole [1.189 (5) and 1.194 (4) Å; Garcia et al., 1997]. The C14-N1 bond in the title molecule [1.143(2) \AA] is similar in length to that of 2-cyanobenzophenone $[1.130(5) \AA$; Preut et al., 1992].

Fig. 1. The title molecule with ellipsoids drawn at the 30% probability level and H atoms shown with arbitrary radii. Only one set of the partially populated H -atom positions is illustrated for C18 and C19.

[^0]: \dagger Alternative name: 1-(3-furyl)-1,7,8,8a-tetrahydro-5a,8-dimethyl-4,4a-epoxy-2-benzopyran-3($4 H$)-one.

[^1]: \dagger Present address: Center for Macromolecular Crystallography, The University of Alabama at Birmingham. Birmingham. AL 35294-0005. USA.

